Detection-aided liver lesion segmentation using deep learning

نویسندگان

  • Miriam Bellver
  • Kevis-Kokitsi Maninis
  • Jordi Pont-Tuset
  • Xavier Giró
  • Jordi Torres
  • Luc Van Gool
چکیده

A fully automatic technique for segmenting the liver and localizing its unhealthy tissues is a convenient tool in order to diagnose hepatic diseases and assess the response to the according treatments. In this work we propose a method to segment the liver and its lesions from Computed Tomography (CT) scans using Convolutional Neural Networks (CNNs), that have proven good results in a variety of computer vision tasks, including medical imaging. The network that segments the lesions consists of a cascaded architecture, which first focuses on the region of the liver in order to segment the lesions on it. Moreover, we train a detector to localize the lesions, and mask the results of the segmentation network with the positive detections. The segmentation architecture is based on DRIU [8], a Fully Convolutional Network (FCN) with side outputs that work on feature maps of different resolutions, to finally benefit from the multi-scale information learned by different stages of the network. The main contribution of this work is the use of a detector to localize the lesions, which we show to be beneficial to remove false positives triggered by the segmentation network. Source code and models are available at https://imatge-upc.github.io/liverseg-2017-nipsws/.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Liver Lesion Detection using Cascaded Deep Residual Networks

Automatic segmentation of liver lesions is a fundamental requirement towards the creation of computer aided diagnosis (CAD) and decision support systems (CDS). Traditional segmentation approaches depend heavily upon hand-crafted features and a priori knowledge of the user. As such, these methods are difficult to adopt within a clinical environment. Recently, deep learning methods based on fully...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

A New Algorithm for Skin Lesion Border Detection in Dermoscopy Images

Background: With advances in medical imaging systems, digital dermoscopy has become one of the major imaging modalities in the analysis of skin lesions. Thus, automated segmentation or border detection has a great impact on the subsequent steps of skin cancer computer-aided diagnosis using demoscopy images. Since dermoscopy images suffer from artifacts such as shading and hair, there is a need ...

متن کامل

A Novel Method for Skin Lesion Segmentation

Skin cancer has been the most usual and illustrates 50% of all new cancers detected each year. If they detected at an early stage, treatment can become simple and economically. Accurate skin lesion segmentation is important in automated early skin cancer detection and diagnosis systems. The aim of this study is to provide an effective approach to detect the skin lesion border on a purposed imag...

متن کامل

DeepLesion: Automated Deep Mining, Categorization and Detection of Significant Radiology Image Findings using Large-Scale Clinical Lesion Annotations

Extracting, harvesting and building large-scale annotated radiological image datasets is a greatly important yet challenging problem. It is also the bottleneck to designing more effective data-hungry computing paradigms (e.g., deep learning) for medical image analysis. Yet, vast amounts of clinical annotations (usually associated with disease image findings and marked using arrows, lines, lesio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.11069  شماره 

صفحات  -

تاریخ انتشار 2017